Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep Med ; 4(5): 101037, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2317671

ABSTRACT

CRISPR-Cas-based diagnostics have the potential to elevate nucleic acid detection. CRISPR-Cas systems can be combined with a pre-amplification step in a one-pot reaction to simplify the workflow and reduce carryover contamination. Here, we report an engineered Cas12b with improved thermostability that falls within the optimal temperature range (60°C-65°C) of reverse transcription-loop-mediated isothermal amplification (RT-LAMP). Using de novo structural analyses, we introduce mutations to wild-type BrCas12b to tighten its hydrophobic cores, thereby enhancing thermostability. The one-pot detection assay utilizing the engineered BrCas12b, called SPLENDID (single-pot LAMP-mediated engineered BrCas12b for nucleic acid detection of infectious diseases), exhibits robust trans-cleavage activity up to 67°C in a one-pot setting. We validate SPLENDID clinically in 80 serum samples for hepatitis C virus (HCV) and 66 saliva samples for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high specificity and accuracy. We obtain results in as little as 20 min, and with the extraction process, the entire assay can be performed within an hour.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Nucleic Acids/genetics , COVID-19 Testing , CRISPR-Cas Systems/genetics
2.
Commun Med (Lond) ; 2: 7, 2022.
Article in English | MEDLINE | ID: covidwho-1860425

ABSTRACT

Background: The coronavirus disease (COVID-19) caused by SARS-CoV-2 has swept through the globe at an unprecedented rate. CRISPR-based detection technologies have emerged as a rapid and affordable platform that can shape the future of diagnostics. Methods: We developed ENHANCEv2 that is composed of a chimeric guide RNA, a modified LbCas12a enzyme, and a dual reporter construct to improve the previously reported ENHANCE system. We validated both ENHANCE and ENHANCEv2 using 62 nasopharyngeal swabs and compared the results to RT-qPCR. We created a lyophilized version of ENHANCEv2 and characterized its detection capability and stability. Results: Here we demonstrate that when coupled with an RT-LAMP step, ENHANCE detects COVID-19 samples down to a few copies with 95% accuracy while maintaining a high specificity towards various isolates of SARS-CoV-2 against 31 highly similar and common respiratory pathogens. ENHANCE works robustly in a wide range of magnesium concentrations (3 mM-13 mM), allowing for further assay optimization. Our clinical validation results for both ENHANCE and ENHANCEv2 show 60/62 (96.7%) sample agreement with RT-qPCR results while only using 5 µL of sample and 20 minutes of CRISPR reaction. We show that the lateral flow assay using paper-based strips displays 100% agreement with the fluorescence-based reporter assay during clinical validation. Finally, we demonstrate that a lyophilized version of ENHANCEv2 shows high sensitivity and specificity for SARS-CoV-2 detection while reducing the CRISPR reaction time to as low as 3 minutes while maintaining its detection capability for several weeks upon storage at room temperature. Conclusions: CRISPR-based diagnostic platforms offer many advantages as compared to conventional qPCR-based detection methods. Our work here provides clinical validation of ENHANCE and its improved form ENHANCEv2 for the detection of COVID-19.

3.
EBioMedicine ; 77: 103926, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1739672

ABSTRACT

BACKGROUND: Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. METHODS: Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). FINDINGS: Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10-30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. INTERPRETATION: This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be easily expanded beyond COVID-19. FUNDING: This project was funded in part by the United States-India Science & Technology Endowment Fund- COVIDI/247/2020 (P.K.J.), Florida Breast Cancer Foundation- AGR00018466 (P.K.J.), National Institutes of Health- NIAID 1R21AI156321-01 (P.K.J.), Centers for Disease Control and Prevention- U01GH002338 (R.R.D., J.A.L., & P.K.J.), University of Florida, Herbert Wertheim College of Engineering (P.K.J.), University of Florida Vice President Office of Research and CTSI seed funds (M.S.), and University of Florida College of Veterinary Medicine and Emerging Pathogens Institute (R.R.D.).


Subject(s)
Brevibacillus , COVID-19 , Brevibacillus/genetics , COVID-19/diagnosis , Humans , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics
4.
J Vac Sci Technol B Nanotechnol Microelectron ; 40(2): 023204, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1691449

ABSTRACT

The SARS-CoV-2 pandemic has had a significant impact worldwide. Currently, the most common detection methods for the virus are polymerase chain reaction (PCR) and lateral flow tests. PCR takes more than an hour to obtain the results and lateral flow tests have difficulty with detecting the virus at low concentrations. In this study, 60 clinical human saliva samples, which included 30 positive and 30 negative samples confirmed with RT-PCR, were screened for COVID-19 using disposable glucose biosensor strips and a reusable printed circuit board. The disposable strips were gold plated and functionalized to immobilize antibodies on the gold film. After functionalization, the strips were connected to the gate electrode of a metal-oxide-semiconductor field-effect transistor on the printed circuit board to amplify the test signals. A synchronous double-pulsed bias voltage was applied to the drain of the transistor and strips. The resulting change in drain waveforms was converted to digital readings. The RT-PCR-confirmed saliva samples were tested again using quantitative PCR (RT-qPCR) to determine cycling threshold (Ct) values. Ct values up to 45 refer to the number of amplification cycles needed to detect the presence of the virus. These PCR results were compared with digital readings from the sensor to better evaluate the sensor technology. The results indicate that the samples with a range of Ct values from 17.8 to 35 can be differentiated, which highlights the increased sensitivity of this sensor technology. This research exhibits the potential of this biosensor technology to be further developed into a cost-effective, point-of-care, and portable rapid detection method for SARS-CoV-2.

6.
J Med Virol ; 93(9): 5660-5665, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363702

ABSTRACT

Genome-wide analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is essential to better understand infectivity and virulence and to track coronavirus disease 2019 (COVID-19) cases and outbreaks. We performed whole-genome sequencing of 27 SARS-CoV-2 strains isolated between January 2020 and April 2020. A total of 54 mutations in different genomic regions was found. The D614G mutation, first detected in March 2020, was identified in 18 strains and was more likely associated with a lower cycle threshold (<25) in real-time reverse-transcription polymerase chain reaction diagnostic tests than the original D614 (prevalence ratio = 2.75; 95% confidence interval, 1.19-6.38). The integration of sequencing and epidemiological data suggests that SARS-CoV-2 transmission in both quarantine areas and in the community in Vietnam occur at the beginning of the epidemic although the country implemented strict quarantine quite early, with strict contact tracing, and testing. These findings provide insights into the nature of the epidemic, as well as shape strategies for COVID-19 prevention and control in Vietnam.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/transmission , Contact Tracing , Female , Humans , Male , Middle Aged , Mutation , Phylogeny , Quarantine , Regression Analysis , Vietnam/epidemiology , Whole Genome Sequencing , Young Adult
7.
J Med Virol ; 92(10): 2209-2215, 2020 10.
Article in English | MEDLINE | ID: covidwho-935123

ABSTRACT

In January 2020, we identified two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in a familial cluster with one person coming from Wuhan, China. The complete genome sequences of two SARS-CoV-2 strains isolated from these patients were identical and 99.98% similar to strains isolated in Wuhan. This is genetically suggestive of human-to-human transmission of SARS-CoV-2 and indicates Wuhan as the most plausible origin of the early outbreak in Vietnam. The younger patient had a mild upper respiratory illness and a brief viral shedding, whereas the elderly with multi-morbidity had pneumonia, prolonged viral shedding, and residual lung damage. The evidence of nonsynonymous substitutions in the ORF1ab region of the viral sequence warrants further studies.


Subject(s)
COVID-19/transmission , Genome, Viral , Lung/virology , SARS-CoV-2/genetics , Adult , Aged , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , China/epidemiology , Family , Genotype , Humans , Lung/pathology , Male , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Travel , Vietnam/epidemiology , Virus Replication , Whole Genome Sequencing
8.
Nat Commun ; 11(1): 4906, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-807811

ABSTRACT

The CRISPR-Cas12a RNA-guided complexes have tremendous potential for nucleic acid detection but are limited to the picomolar detection limit without an amplification step. Here, we develop a platform with engineered crRNAs and optimized conditions that enabled us to detect various clinically relevant nucleic acid targets with higher sensitivity, achieving a limit of detection in the femtomolar range without any target pre-amplification step. By extending the 3'- or 5'-ends of the crRNA with different lengths of ssDNA, ssRNA, and phosphorothioate ssDNA, we discover a self-catalytic behavior and an augmented rate of LbCas12a-mediated collateral cleavage activity as high as 3.5-fold compared to the wild-type crRNA and with significant improvement in specificity for target recognition. Particularly, the 7-mer DNA extension to crRNA is determined to be universal and spacer-independent for enhancing the sensitivity and specificity of LbCas12a-mediated nucleic acid detection. We perform a detailed characterization of our engineered ENHANCE system with various crRNA modifications, target types, reporters, and divalent cations. With isothermal amplification of SARS-CoV-2 RNA using RT-LAMP, the modified crRNAs are incorporated in a paper-based lateral flow assay that can detect the target with up to 23-fold higher sensitivity within 40-60 min.


Subject(s)
Bacterial Proteins/metabolism , Betacoronavirus/genetics , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Nucleic Acid Amplification Techniques/methods , RNA, Viral/isolation & purification , Trans-Activators/metabolism , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , DNA, Single-Stranded , Pandemics , Pneumonia, Viral , RNA, Guide, Kinetoplastida/genetics , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL